
Deep Learning Basics
(#xx: Keras-based Convolutional Neural Network Practice-Part 7)

2023 Autumn

Prof. Byung-Gyu Kim
Intelligent Vision Processing Lab. (IVPL)

http://ivpl.sookmyung.ac.kr
Dept. of IT Engineering, Sookmyung Women’s University

E-mail: bg.kim@ivpl.sookmyung.ac.kr

2

Goal of this lecture

❖ Understanding what is the transfer learning

▪ Transfer learning

▪ How to implement the transfer learning

▪ Actual practice

• Transfer Learning

Contents

4

Transfer Learning (1)

❖ What is “Transfer Learning”?

▪ When a new object recognition or classification is required using the previously learned
(trained) object identification model.

EX) How to create an automated computer vision application that can

distinguish between “food” and “not food”. Which way is the best????

5

Transfer Learning (2)

▪ Two ways:

1) New model generation (New training)

2) Utilize the pre-trained model to get some results

6

Transfer Learning (3) : using Keras

❖ Transfer Learning is composed of:

1) Taking a network pre-trained on a dataset.

• Utilize the robust, discriminative filters learned by state-of-the-art networks on challenging
datasets (such as ImageNet or COCO).

2) And utilizing it to recognize image/object categories it was not trained on.

• then apply these networks to recognize objects the model was never trained on.

7

Transfer Learning (4) : using Keras

❖ Two types of transfer learning in the context of deep learning:

1) Transfer learning via feature extraction

2) Transfer learning via fine-tuning
In feature extraction, we treat the pre-trained network as

an arbitrary feature extractor, allowing the input image

to propagate forward, stopping at pre-specified layer,

and taking the outputs of that layer as your features.

Fine-tuning, on the other hand, requires that we update

the model architecture itself by removing the previous

fully-connected layer heads, providing new, freshly

initialized ones, and then training the new FC layers to

predict our input classes.

8

Transfer Learning (5) : using Keras

❖ Feature Extraction Approach
▪ 1) Datasets

• Here, Food-5k dataset, a dataset containing 5,000 images falling into two classes: “food” and “not-food”
(https://mmspg.epfl.ch/downloads/food-image-datasets/) curated by the Multimedia Signal Processing
Group (MSPG) of the Swiss Federal Institute of Technology.

(You can use FTP client program to download Food-5K dataset.)

[the Foods-5K dataset]

https://mmspg.epfl.ch/downloads/food-image-datasets/

9

Transfer Learning (6) : using Keras

▪ 2) Train the CNN, first..!!!

• Deep neural networks trained on large-scale datasets such as ImageNet and COCO have proven to
be excellent at the task of transfer learning.

• These networks learn a set of rich, discriminative features capable of recognizing 100s to 1,000s of object
classes — it only makes sense that these filters can be reused for tasks other than what the CNN was
originally trained on.

The original

VGG16 network

architecture

Removing the FC layers

from VGG16 and instead

of returning the final

POOL layer→ Feature

extractor

10

Transfer Learning (7) : using Keras

▪ 3) The input image to forward propagate through the entire network.

• Stop propagation at an arbitrary, but pre-specified layer (such as an activation or pooling layer).

• Extract the values from the specified layer (typically prior to the fully-connected layers, but it really
depends on your particular dataset).

• Treat the values as a feature vector.

The original

VGG16 network

architecture

Removing the FC layers

from VGG16 and instead

of returning the final

POOL layer→ Feature

extractor

7 x 7 x 512 = 25,088 values

Given a total of N images in our network, our dataset would

now be represented as a list of N vectors, each of 25,088-dim.

11

Transfer Learning (9) : using Keras

▪ 4) Train off-the-shelf machine learning models

• Linear SVM, Logistic Regression, Decision Trees, or Random Forests on top of these features to obtain
a classifier that can recognize new classes of images.

I want you to keep in mind that the CNN itself is not capable of recognizing

these new classes. Instead, we are using the CNN as an intermediary feature

extractor.

12

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (1)

❖ Project structure

dataset/ directory, while empty
now, will soon contain the Food-5K
images in a more organized form.
output/ directory will house our

extracted features (stored in three

separate .csv files).

•pyimagesearch/config.py : Our custom configuration

file will help us manage our dataset, class names,

and paths. It is written in Python directly so that we
can use os.path to build OS-specific formatted file

paths directly in the script.
•build_dataset.py : Using the configuration, this

script will create an organized dataset on disk,

making it easy to extract features from.
•extract_features.py : The transfer learning magic

begins here. This Python script will use a pre-

trained CNN to extract raw features, storing the
results in a .csv file. The label encoder .cpickle file

will also be output via this script.
•train.py : Our training script will train a Logistic

Regression model on top of the previously

computed features. We will evaluate and save the
resulting model as a .cpickle .

13

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (2)

▪ config.py

import the necessary packages
import os

initialize the path to the *original* input directory of images
ORIG_INPUT_DATASET = "Food-5K"

initialize the base path to the *new* directory that will contain
our images after computing the training and testing split
BASE_PATH = "dataset“

define the names of the training, testing, and validation
directories
TRAIN = "training"
TEST = "evaluation"
VAL = "validation"

initialize the list of class label names
CLASSES = ["non_food", "food"]

set the batch size
BATCH_SIZE = 32

(continue)

initialize the label encoder file path and the output
directory to
where the extracted features (in CSV file format) will be
stored
LE_PATH = os.path.sep.join(["output", "le.cpickle"])
BASE_CSV_PATH = "output"

set the path to the serialized model after training
MODEL_PATH = os.path.sep.join(["output", "model.cpickle"])

14

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (2)

▪ build_dataset.py

import the necessary packages
from pyimagesearch import config
from imutils import paths
import shutil
import os

loop over the data splits
for split in (config.TRAIN, config.TEST, config.VAL):
grab all image paths in the current split
print("[INFO] processing '{} split'...".format(split))
p = os.path.sep.join([config.ORIG_INPUT_DATASET, split])
imagePaths = list(paths.list_images(p))

(continue)

loop over the image paths
for imagePath in imagePaths:
extract class label from the filename
filename = imagePath.split(os.path.sep)[-1]
label = config.CLASSES[int(filename.split("_")[0])]

construct the path to the output directory
dirPath = os.path.sep.join([config.BASE_PATH, split, label])

if the output directory does not exist, create it
if not os.path.exists(dirPath):
os.makedirs(dirPath)

construct the path to the output image file and copy it
p = os.path.sep.join([dirPath, filename])
shutil.copy2(imagePath, p)

→ reconstructing “dataset_name/split_name/class_label/example_of_class_label.jpg”

15

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (3)

▪ build_dataset.py

import the necessary packages
from pyimagesearch import config
from imutils import paths
import shutil
import os

loop over the data splits
for split in (config.TRAIN, config.TEST, config.VAL):

grab all image paths in the current split
print("[INFO] processing '{} split'...".format(split))
p = os.path.sep.join([config.ORIG_INPUT_DATASET, split])
imagePaths = list(paths.list_images(p))

(continue)

loop over the image paths
for imagePath in imagePaths:

extract class label from the filename
filename = imagePath.split(os.path.sep)[-1]
label = config.CLASSES[int(filename.split("_")[0])]

construct the path to the output directory
dirPath = os.path.sep.join([config.BASE_PATH, split, label])

if the output directory does not exist, create it
if not os.path.exists(dirPath):
os.makedirs(dirPath)

construct the path to the output image file and copy it
p = os.path.sep.join([dirPath, filename])
shutil.copy2(imagePath, p)

16

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (4)

▪ extract_features.py(1)

import the necessary packages
from sklearn.preprocessing import LabelEncoder
from keras.applications import VGG16
from keras.applications import imagenet_utils
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from pyimagesearch import config
from imutils import paths
import numpy as np
import pickle
import random
import os

load the VGG16 network and initialize the label encoder
print("[INFO] loading network...")
model = VGG16(weights="imagenet", include_top=False)

le = None

loop over the data splits
for split in (config.TRAIN, config.TEST, config.VAL):

grab all image paths in the current split
print("[INFO] processing '{} split'...".format(split))
p = os.path.sep.join([config.BASE_PATH, split])
imagePaths = list(paths.list_images(p))

randomly shuffle the image paths and then extract the class
labels from the file paths
random.shuffle(imagePaths)
labels = [p.split(os.path.sep)[-2] for p in imagePaths]

if the label encoder is None, create it
if le is None:

le = LabelEncoder()
le.fit(labels)

open the output CSV file for writing
csvPath = os.path.sep.join([config.BASE_CSV_PATH,
"{}.csv".format(split)])
csv = open(csvPath, "w")

Load VGG16 model without Fully Connected Layers

17

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (5)

▪ extract_features.py (2)

loop over the images in batches
for (b, i) in enumerate(range(0, len(imagePaths), config.BATCH_SIZE)):

extract the batch of images and labels, then initialize the
list of actual images that will be passed through the network
for feature extraction
print("[INFO] processing batch {}/{}".format(b + 1,
int(np.ceil(len(imagePaths) / float(config.BATCH_SIZE)))))
batchPaths = imagePaths[i:i + config.BATCH_SIZE]
batchLabels = le.transform(labels[i:i + config.BATCH_SIZE])
batchImages = []

loop over the images and labels in the current batch
for imagePath in batchPaths:

load the input image using the Keras helper utility
while ensuring the image is resized to 224x224 pixels
image = load_img(imagePath, target_size=(224, 224))
image = img_to_array(image)

preprocess the image by (1) expanding the dimensions and
(2) subtracting the mean RGB pixel intensity from the
ImageNet dataset
image = np.expand_dims(image, axis=0)
image = imagenet_utils.preprocess_input(image)

add the image to the batch
batchImages.append(image)

18

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (6)

▪ extract_features.py (3)

pass the images through the network and use the outputs as
our actual features, then reshape the features into a
flattened volume
batchImages = np.vstack(batchImages)
features = model.predict(batchImages, batch_size=config.BATCH_SIZE)
features = features.reshape((features.shape[0], 7 * 7 * 512))
loop over the class labels and extracted features
for (label, vec) in zip(batchLabels, features):

construct a row that exists of the class label and
extracted features
vec = ",".join([str(v) for v in vec])
csv.write("{},{}\n".format(label, vec))

close the CSV file
csv.close()

serialize the label encoder to disk
f = open(config.LE_PATH, "wb")
f.write(pickle.dumps(le))
f.close()

the output of the CNN as a

feature vector.

19

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (7)

▪ Execute result of “extract_features.py”:

20

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (8)

▪ Implementing our training module (train.py) (1)
import the necessary packages
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from pyimagesearch import config
import numpy as np
import pickle
import os

def load_data_split(splitPath):
initialize the data and labels
data = []
labels = []

loop over the rows in the data split file
for row in open(splitPath):

extract the class label and features from the row
row = row.strip().split(",")
label = row[0]
features = np.array(row[1:], dtype="float")

update the data and label lists
data.append(features)
labels.append(label)

convert the data and labels to NumPy arrays
data = np.array(data)
labels = np.array(labels)

return a tuple of the data and labels
return (data, labels)

21

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (9)

▪ Implementing our training module (train.py) (2)

derive the paths to the training and testing CSV files
trainingPath = os.path.sep.join([config.BASE_CSV_PATH, "{}.csv".format(config.TRAIN)])
testingPath = os.path.sep.join([config.BASE_CSV_PATH, "{}.csv".format(config.TEST)])

load the data from disk
print("[INFO] loading data...")
(trainX, trainY) = load_data_split(trainingPath)
(testX, testY) = load_data_split(testingPath)

load the label encoder from disk
le = pickle.loads(open(config.LE_PATH, "rb").read())

train the model
print("[INFO] training model...")
model = LogisticRegression(solver="lbfgs", multi_class="auto")
model.fit(trainX, trainY)

evaluate the model
print("[INFO] evaluating...")
preds = model.predict(testX)
print(classification_report(testY, preds, target_names=le.classes_))

serialize the model to disk
print("[INFO] saving model...")
f = open(config.MODEL_PATH, "wb")
f.write(pickle.dumps(model))
f.close()

로지스틱(Logistic) 회귀분석은 그 명칭과 달리 회귀분석
문제와 분류문제 모두에 사용할 수 있다 . 로지스틱
회귀분석 모형에서는 종속 변수가 이항 분포를 따르고 그

모수 μ가 독립 변수 x에 의존한다고 가정한다.

Model = Sequential()
model.add(Dense(2, # output dim is 2, one score per each class

activation='softmax',

kernel_regularizer=L1L2(l1=0.0, l2=0.1),

input_dim=len(feature_vector)) # input dimension = number of features yo
ur data has

model.compile(optimizer='sgd’, loss='categorical_crossentropy’,

metrics=['accuracy'])

model.fit(x_train, y_train, epochs=100, validation_data=(x_val, y_val))

22

Transfer Learning (8) : Actual Practice – Food/Non-Food classification (10)

▪ Let’s run train.py…!!!! And check on “output” folder…!!!!

Saved model

http://ivpl.sookmyung.ac.kr

Thank you for your attention.!!!
QnA

